WHOOP - Aggie Robotics - VEXU Spin Up - Embedded Software Integration

Embedded Systems Software Integration
Overview:

In order to develop the computer vision targeting system, it was necessary to streamline the
development process so that the vision code can focus on implementation.

Step: 1 Date: 12/21/2022 Engineer: Jeremy Eastham

Witness: Mariana Sanchez Date Reviewed: 02/21/2023

Objective:
- Design the software counterpart to the Raspberry Pi assembly
- Discuss and document design challenges

Remarks:

The hardware design of the Raspberry Pi assembly necessitates disabling terminal access over
USB. The reason for this is that the virtual serial port that is used by the UART pins on the Raspberry Pi
for communication with the VEX Brain is the same port that is used for SSH over USB. If terminal
access were left enabled, the communication link between the Pi and the Brain would be polluted with
bash commands and command output. Due to this limitation, the first software problem that needed to
be solved was the difficulty of deploying new code to the Raspberry Pi. It is also not optimal to only
have one copy of the working vision code. The team uses a git repository to manage changes, so the
team designed an automated system that automatically keeps the Raspberry Pi up to date with the latest
code over the internet. The Pi polls the repository for updates every few seconds and pulls any new
changes, and then restarts the vision program. This allows for quick iteration as long as the Pi has Wi-Fi
access. This program can be daemonized so that the Raspberry automatically runs this program when it
boots up and restarts it if it crashes. This will allow the Raspberry Pi to respond to commands from the
robot as soon as it boots up without human intervention.

Micro USB—] Camera

VEX Brain |«—Serial over RS485—p| REAED E erial over UART—| Raspberry Pi Wi-Fi—p COC!e
HAT Repository

MP1584 Step-Down | Remote

Power- N
Voltage Converter l Machine

Power- >

VEX Brain to Raspberry Pi Communication Diagram
Made with LucidChart

G-7

WHOOP - Aggie Robotics - VEXU Spin Up - Embedded Software Integration

Next, the team needed to design a communication protocol between the VEX Brain and the
Raspberry Pi. In preliminary testing, the communication link did not suffer from any data loss. However,
the communication needs to be resilient in order to recover from malformed messages. The vision
program crashing during a match could be catastrophic. This can be broken down into four problems:
packet framing, packet structure, packet verification, and packet recovery. The solutions to these
problems needed to be designed with performance in mind. Further research will need to be done to
implement algorithms that meet all of these requirements.

Accomplishments:
- Designed the software architecture for the Raspberry Pi to VEX Brain link

Step: 2 Date: 01/04/2023

Engineer: Jeremy Eastham

Witness: Mariana Sanchez Date Reviewed: 02/21/2023

Objective:
- Build an automatic deployment system for the Raspberry Pi

l

Send Message: Start
Vision Process

Send Message: Kill
Vision Process

Robot Raspberry Pi
Powered On Powered On

Start Robot Start Repository
Server Polling Process

Robot Send Message: Start Start Code No Wait for Message:
Program Run Vision Process Management Process * Vision Process Killed
‘ Wait 5
Seconds
Send Message to Pi: Download Install Code
Match Starting Message - New Code Dependencies
Received: Start Vision “>—vess| Start Vision
PEEESS Process
Send Odometry Data VBT [Wizesrye: Receive Odometry | | geng vision Data
Match Starting Data
No
l No
Receive Vision Data ves
Vision Process Died? Message
Yes. Received: Match
—— Ending
Send Message to Pi: Vision Process -
Match Endin ! Y LAYy
9 No Running? ** Process

o

Robot
Powered Off

Raspberry Pi
Powered Off

No.

Message
Received: Kill Vision
Process

Y

Send Message:
Vision Process Killed

J

&

Control Flow Diagram of the Robot Vision Server
Made with LucidChart

G-7

WHOOP - Aggie Robotics - VEXU Spin Up - Embedded Software Integration

Remarks:

The automatic deployment system was relatively simple in theory, but complex in practice. The
main aspect of this program that added complexity was the fact that the Raspberry Pi needs to
concurrently poll the repository for updates and also manage the vision program. It should also relaunch
the vision program if it crashes. The team ultimately decided to build this project with multiple
concurrent processes. An interprocess communication protocol was designed that manages four separate
processes: the server (process monitor), the repository poller (code updater), and the code manager
(process starter/killer). This architecture was complex to build, but it should be resilient against
unpredictable circumstances.

One major issue with this server is that code dependency installation could not be fully
automated. In addition to installing Python packages, certain package-specific commands need to be run
to ensure that certain binaries are installed correctly. However, once a package is installed, code updates
are completely automatic.

The team also had issues deploying the deployment server. The Raspberry Pi only has 1 GB of
RAM. Once the server started launching processes, this filled up quickly. By default, the Pi is set up
with a statically allocated 100 MB pagefile. After diagnosing the problem, the pagefile was set to
automatically resize as needed so that memory will not be an issue in the future.

Accomplishments:
- Successfully set up automatic deployment on the Raspberry Pi

Step: 3 Date: 01/14/2023 Engineer: Jeremy Eastham

Witness: Mariana Sanchez Date Reviewed: 02/21/2023

Objective:
- Design and implement a serial communication protocol between
the VEX Brain and the Raspberry Pi = "proto3";
Remarks: ’
As mentioned previously, the problem of reliable communication
between the robot and the Raspberry Pi can be broken up into four tasks:
packet framing, packet structure, packet verification, and packet

recovery.

For the problem of packet framing, the team decided to use the
simple and widely regarded Consistent-Overhead Byte Stuffing
algorithm. This algorithm encodes bytes of data in such a way that the
packet does not contain any null bytes. This means that we can encode a
packet using COBS and then send a null byte to indicate that the packet
is complete. The process on the other end of the connection will continue receiving bytes until it sees a
null byte and then attempt to parse the packet.

G-7

WHOOP - Aggie Robotics - VEXU Spin Up - Embedded Software Integration

For the problem of packet structure, the team decided to use the industry-standard ProtoBuffers
library created by Google. ProtoBuffers can encode any data structure according to a specification
written in an easy to use domain-specific language. The library is language-agnostic and
protocol-agnostic so we can use it to generate parsing code for both sides of the serial link.

For the problem of packet verification, the team decided to use a popular library called xxHash.
This is a hashing algorithm that is faster than cryptographically secure algorithms such as MDS5 or
SHA-1. Using this algorithm, we can attach a hash to each packet and use that hash to verify the
integrity of the packet’s data on the other end of the serial link.

For the problem of packet recovery, the team decided to declare two different types of packets:
message packets and data packets. Message packets are important. They contain data such as “the match
is starting” or “the vision program is still running”. These packets require a confirmation packet to be
sent back to the sender to ensure that it is received. Data packets contain data such as odometry position
or goal angle. It is not a problem if a few of these are missed, so it is more efficient to just send the next
one instead of requiring confirmation each time a packet is sent.

Accomplishments:
- Designed and implemented a robust serial communication protocol

Engineer: Jeremy Eastham Witness: Mariana Sanchez Date Reviewed: 02/21/2023
G-7

